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The thermodynamic properties of the laser distribution in the steadily 
oscillating state are investigated to determine the minimum characteristic 
of the entropy production. First, the laser Langevin equation for five 
random variables is treated in the light of the stochastic calculus to deduce 
the photon-number rate equation h = - C(n - no) + [A/(1 + sn)](n - nA), 
where nc and nA are the two constants of the fluctuation attributed to the 
noise forces subject to the usual fluctuation-dissipation theorem, with 
n,l < 0 for the inverted atomic population. We then combine the dynamics 
of the lasing mode with a model open system of the Lebowitz type with two 
reservoirs for which the entropy production tr(p) is expressed and made 
subject to a variational principle: The modified variation scheme, the same 
as Prigogine's local potential method, is shown to give the exact lasing 
distribution p as the optimum between two distributions of thermal type 
with temperatures far from each other. 

KEY WORDS:  Stochastic calculus; information thermodynamics; 
reservoirs; negative temperature; entropy production; local potential. 

1. I N T R O D U C T I O N  

M o r e  than fifteen years  has passed since the initial  a t t empt  to develop a 
systematic  laser  theory,  and  several a lmost  comple te  q u a n t u m  stat ist ical  
descr ipt ions  o f  laser phenomena ,  including nonl inear  f luctuat ion effects, are 
now avai lable .  ~1-3~ A mathemat i ca l  analysis  o f  the basis o f  such descr ipt ions  
was made  by  H e p p  and  Lieb(~ ~ (pr imar i ly  a r igorous  der iva t ion  o f  the laser  
evolut ion  equa t ion  f rom the Hami l ton i an  dynamics  supp lemented  by  a 
t he rmodynamic - l imi t  a rgument )  and  discussed by  them fur ther  f rom the 
" e x a c t  m o d e l "  po in t  o f  view of  the irreversible stat is t ical  mechanics  o f  open 
systems. (~'6~ The present  pape r  aims to establ ish how the statist ical  mechanical  
theory  can be conver ted  into a t he rmodynamic  descript ion.  The relevant  
t he rmodynamics  is the nonequi l ib r ium one due to Glansdor f f  and  Prigogine,  
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who developed a phenomenology to describe macroscopic structure forma- 
tions in dissipative systems, their thermodynamic stability, and the nature of 
the associated fluctuations37~ 

As noted by Hepp, (6~ the laser offers a typical example of a bifurcation 
phenomenon which can be described by the instability of the attractor of a 
given set of nonlinear deterministic, autonomous equations against external 
parameters. Therefore, with regard to laser theory one is interested in the 
nature of the predicted new equilibrium of bifurcation, often called "far  
from thermal equilibrium," an approach to equilibrium with the use of a 
probability distribution capable of describing the transient fluctuations, and 
then necessarily in a conceptualization, hoping for laws in accord with 
thermodynamics, with the laws in terms of the entropy production conforming 
to the Glansdorff-Prigogine context. The program was considered in fact by 
Graham, (8~ and the present paper aims at a concrete answer within the semi- 
classical laser theory. 

First, we invoke the revised Langevin method known as the method of 
stochastic differential equations (SDE), where the stochastic calculus of It6 
and Stratonovich (9~ provides an essential tool. We also need a framework in 
which to combine thermodynamics and information theory--information 
thermodynamics according to Ingarden and Kossakowski(l~ we will 
discuss here only to the extent to which it is needed to formulate the entropy 
production relevant to the laser SDE. Then we proceed to the physics of 
lasers, including the Dicke superradiance, (11~ and obtain the minimum 
property of a quantity associated with the entropy production in the steady 
state and its possible extension to transient states. In this paper, we con- 
centrate on the well-explored laser distribution in the steady oscillation. The 
transient processes will be treated in a subsequent paper. (31~ 

In their exposition of quantum theory of an optical maser, Scully and 
Lamb (~2~ discussed the specific nature of the problem, emphasizing that the 
lasing state of the electromagnetic field system is in contact with a steady but 
nonthermal reservoir capable of supplying energy to be converted into a 
nearly monochromatic oscillation at the optical frequency outside the cavity: 
Its thermodynamic openness should therefore be characterized by the 
presence of energy flows between the system and, actually, two reservoirs of 
thermal type, viz. the reservoirs of the energy supply and the receiver. The 
entropy production for such an open system in contact with more than two 
thermal reservoirs has been discussed by Lebowitz et al., ~3-~5~ who proposed 
a formula of the entropy production 

a(p) = (d/dt)H(p) - kB ~ fi, J, 

where J~ is the energy flow from the ith reservoir to the system, kBfi~ is the 
inverse temperature of the ith reservoir, and H(p) is the Boltzmann H-function 
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of the density matrix p (probability density p in the classical sense) for the 
system to obey a relevant evolution equation: 

H([) = --kB Tr(p log p), (d/dt)p = Lp 

We use the above formula, showing its consistency with the information 
thermodynamic argument and leaving the examination of its validity to a 
later time. 

All we demonstrate here is that the laser is an ideal example of the 
Lebowitz type of open system: The stochastic calculus of It6 and Stratonovich 
provides us with an adequate tool to find the thermodynamic characterization 
of the reservoirs, i.e., to determine the fli and Ji in the formula for a(p) for 
the laser system, in particular revealing the effective negative temperature in 
the lasing, the source of the immense power that is emitted. We remark also 
that because of this large difference in temperature between the different 
reservoirs the method of expanding the a(p) in terms of the temperature 
difference ~13~ is inadequate, so that a consistent variation scheme is neces- 
sary, in accordance with our previous formulation of variation, ~16~ which 
revises Prigogine's local potential concept. ~7,27,28~ In this way, we reach the 
main conclusion of the present paper: The steady-lasing distribution p for 
the power of the light being emitted is derived from a modified variational 
principle of the local-potential type 

~(fi, p) = minimum with respect to/~, fimin = P 

where e(~6, p) satisfies e(fi = p, p) = cr(p). Then, the algebraic sum of the 
energy flows J~tom + Jrlela vanishes, while the corresponding thermodynamic 
entropy production --/3~to~J~tom- floav~tyJoavtty, equal to the minimized 
value e(p), does not vanish. This nonvanishing of the steady entropy produc- 
tion deduced from the minimization reflects the original Prigogine thermo- 
dynamic context, i.e., the entropy production minimum theorem in the 
presence of a force constraint. (17~ Finally, the resulting extensive flow, 
Jatom > 0, expressed in terms of the controllable force lfl~to~l represents the 
Onsager relation in such a far-from-equilibrium situation. 

2. LASER S T O C H A S T I C  DIFFERENTIAL EQUATION 

A laser system is composed of the following three dynamical constit- 
uents: (I) lasing modes of the electromagnetic field in a cavity; (2) a number 
of atoms active in the electromagnetic field in the cavity; (3) heat reservoirs 
with which the above two species are in contact. 

The effects of the reservoirs upon the systematic motion of the other 
subsystems may be given in a stochastic description: For the simplest case 
(the single-mode, two-level-atom theory), therefore, the following set of SDE 
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for five random variables b, b*. R, R*, and Z contains the essence of the laser 
action: 

db = - [(x + ico)b + (iA/~/N)R] dt + dw 

db* = -[ (K - ioJ)b* + ( - iA/v / -N)R *] dt + dw* 

dR = -[(~, + i~oo)R - (iZh/~/-N)Zb] dt + d W  (1) 

dR* = -[(~, - ic%)R* + (iZh/~/-N)Zb*] dt + dW* 

dZ = [ -~ , (Z - Zo) + (ih/a/N)(b*R - bR*)] dt + dW, 

Here, the notation is mostly standard'l-3): K, ~,z, and ~'11 are the three damping 
constants for the complex amplitude of the mode b, the complex atomic 
dipole R, and the inversion of the atomic population Z [= �89 - Mower)], 
respectively. The parameter of coupling between the dipole and the mode is 

denoted by h divided by V/N, where N is the total number of atoms (this 
follows Hepp and Lieb<~>). The capital letters R and Z are used for the atomic 
variables to indicate that these are extensive variables, i.e., variables that can 
take on values of the order of N, which we express as 

R, R*, Z = O(U) (2) 

Hepp and Lieb have shown that such a semiphenomenological set of 
equations can be deduced rigorously from the Hamiltonian dynamics con- 
taining the reservoir freedom under suitable assumptions, especially the 
assumption of a specific model for the reservoir, called the "singular reser- 
voir," which has the effect of eliminating memory terms and, in the limit of  
N--+ 0% closes the equations in terms of only the three collective modes of 
the atoms together with the Gaussian noise terms (dw, dW, their complex 
conjugates, and dW~). They also discussed the extensivity feature of all the 
variables including the noise, showing that 

b, b* = O(N1/2); w, w* = O(1); W, W*, W~ = O(N ~/2) (3) 

so that Eq. (1) can be normalized to the form 

dx. = h . (x)d t  + (1/~/N)dw.  (4) 

where x . ,  h~(x), and w. are all intensive quantities. This is the standard form 
of  SDE involving an extensiveness parameter f~ (=  N) in the sense of  van 
Kampen, ~1~ where the proportionality to N-~/2 of the noise terms may be 
regarded as a guarantee that the actual stochastic process can be approximated 
by a diffusion process. ~s~ 

A basic question about the use of SDE (1) for the laser problem is 
whether it is an adequate substitute for the more rigorous quantum master 
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equation, and the answer to this question, according to Hepp and Lieb, is 
that in the thermodynamic limit the result obtained from the leading terms 
of the SDE without the noise (i.e., the classical, mean field theory) should 
agree with what can be expected from the quantum dynamical theory in the 
same order. In the Appendix we compare the reduced Fokker-Planck equa- 
tions from the present SDE with the system-size expansion (18) of the laser and 
superradiance master equations to examine the next order and to show the 
extent of the adequacy of (1) with a suitable inclusion of the quantum 
fluctuation effects. 

Here, we note the physical result of the leading deterministic equation: 

= - - ( ~  + i Aa))b + ( iA/V'N)/~,  ~* = c.c. 

= - ( 7 ,  + i Acoo)/~ - (2iA/V/-N)ZD, ~ *  = c.c. 

2 = - r , ( z  - Zo) + ( i a / r  - ~ * )  

(a~o = co - n )  (5) 

(Aw0 = O~o - f l )  (6) 

(7) 

in the rotating coordinate system with frequency f~ (b = be-~% etc.). The 
condition of the vanishing of the left-hand sides of (5)-(7) yields the laser 
bifurcation: 

Trivial attractor: 

b = R = 0  

NKY• I1 + (co -- Wo]2] 
Z = Z o  < Z t~=  2a 2 \ K +  7 , ]  j (8) 

Nontrivial attractor: 

f~ = y• + Jr Z = Zth < Zo 
7 . + K  ' 

(9) 

The latter situation corresponds to the lasing state. An approach to the 
lasing state may be described by an adiabatic reduction of the atomic dipole 
variable 

�9 2AZ ~ = 1 - - _ _ - - - ~  
V'N y.  

from ~ = 0 in (6), which is substituted into Eqs. (5) and (7), leading to 

4A 2 nZ 
li = - 2•n + 

N~,l ] + (o~ - ~oo)2bC 
(10) 

4A 2 nZ  
2 = - y l ~ ( Z  - Z o )  

N r ~  1 + (~  - ~ 0 ) 2 / r . :  
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This is the Statz-de Mars equation/2~ The growth of the number of photons 
n from almost zero values to the saturation value ~ 1012 given by (9) may be 
studied by an equation of the type 

( 4A2 / N~' •176 (11) 
1i = -2Kn + 1 + (oa - OJo)2/7~ 2 + (4A2/N~,liT~)n 

which is obtained from the further adiabatic reduction of Z through 2 = 0. 

3. ELEMENTS OF S T O C H A S T I C  CALCULUS 
APPLIED TO THE LASER SDE 

We are led by the manipulation just mentioned in the last section to the 
hope that the adiabatic reduction method can be extended to the SDE, i.e., 
to an inclusion of the noise terms. This requires a careful analysis, because the 
Gaussian noise terms, when interpreted as the white noise, are such that they 
have no differential almost all the time. One finds, then, a guide from the 
stochastic calculus of It6, ~9~ which utilizes the symmetric stochastic integral o f  
Stratonovich/21~ We first summarize its elements as follows: A symmetric 
multiplication of the differential of a stochastic variable X by another 
variable Y denoted by Y o d X  is defined from the corresponding stochastic 
integral in an interval I 

y o  dX(I)  = lip ~_~ �89 + Y(t~)] dX(I~) 
i = 1  

(lip denotes the limit in the probability when the maximum length of the 
subintervals tends to zero), which is related to the usual It6 integral as 

lip ~ Y(t~) dX(I3 + �89 ~ dY(I~) dX(IO 
t = ~  i = i  

= Y a x ( / )  + ~ (dYaX)( I )  

The basic rules in the use of such symmetric products are: 

(i) Y o d X  = Y d X  + �89 d X  dY.  
(ii) Y o ( Z o  dX)  .= ( Y Z )  o dX. 

= ~,=1 [gf(X1 ... Xa)/~Xu] o dX, .  (iii) df(X~, X2 .... , Xa) a 

Remark. In (i), Y o d X =  Y d X ,  if X o r  Yis  a function of t of the 
bounded variation, so that in particular f (  X)  o dt = f (  X)  dt. 

Roughly speaking, therefore, the differential calculus with the symmetric 
multiplication may be utilized just as in the usual calculus, which suggests 
that the adiabatic reduction method can be made equally applicable to the 
SDE first by rearranging it in the Stratonovich sense and then by using the 
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basic rules (i)-(iii). This ansatz should be established mathematically, but here 
we go on further by assuming its validity. A plausibility argumen t is available 
from the consideration that, once the Gaussian white noise in the SDE is 
regarded as the limit of a series of  real noise (the so-called "colored noise"), 
then a theorem by Wong and Zakai <22> ensures that the limit of  the corre- 
sponding solutions of  the SDE are identified with that of the limiting SDE 
in the Stratonovich sense. ~ Before exhibiting our results for the adiabatic 
reduction, we must first fix the physical property of the white noise set up 
in the starting SDE (1), which will be given in the following discussion of the 
limit A ~ 0. 

In the vanishing coupling between the mode and the atoms, A = 0, the 
laser SDE (1) reduces to two groups of  linear Brownian motions; viz. the 
Brownian motion of photons and that of  atoms, the latter being considered 
as the Brownian motion of  spins(23~: 

Brownian motion o f  photons: 

db = - ( , c  + ioJ)b at + dw. db* = - ( , c  - ion)b* dt + dw* (12) 

<dw*(t) dw(t)> = 2Kn dt, (dw(t )  dw(t)5 = 0 (13) 

where the familiar Einstein relation yields 

= (b*bS.a = O(1) (14) 

We now show that the stochastic calculus can be used for the transformation 
of  SDE (12) into another SDE in the intensity-phase representation: 

1 b 
b =  ~ /ne  ~, b* = c . c .  or n = b * b ,  ~ o = ~ l o g  

The basic rules (i)-(iii) together with SDE (12) enable us to obtain 

dn = b * o d b  + b o d b *  = - 2 K n d t  + ( b * o d w  + b o d w * )  

= - 2 ~ n  dt + (b* dw + b dw*) + �89 dw + db dw*) 

the last term being replaced by �89 • 4K~ dt in accordance with the Einstein 
relation (13), so that (after a similar manipulation for dq 0 

dn = -2K(n - ~)dt  + (b* dw + b dw*) 

dq~ = -oJ  dt + 2i dw - dw* 

and 

(cln dn5 = 4K~n dt, (cl9~ d~5 = (K~/n) dt, (dn dcp5 = 0 (16) 

2 We are indebted to Prof. L Arnold and Dr. W. Horsthemke for calling our attention 
to Wong and Zakai's theorem. 
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It is then easy to write the associated diffusion equation, or the Fokker- 
Planck (FP) equation, according to the established rule(9'21): 

(FP) ~P 2K ~ 82 ~p x~ ~2p 0-'7 = ~nn (n - ~)p + 2x~ ~-~n ~ np + oJ-~ + "2n ~q~a 

p + nFn + ,oU + ! 

In particular, 
+ eps /an = 0 (18)  

For the steady-state distribution 

pst(n) = const .exp(-n/g)  (19) 

Note that the intensity n (photon number) has the expected limit ~ in Eq. (15), 
which has been deduced from the symmetric product b* o dw + b o dw* by 
rewriting it in terms of the It6 integral plus the correction according to the 
rule (i). Note that the It6 integral is characterized by its vanishing expectation, 
called the martingale property. 

Brownian motion of  spins: 

dR = - (7~  + i~oo)R dt + dW, dR* = - (7•  - i~ dt + dW* 
(20) 

dZ = -Tj I (Z  - Zo) dt + dW~ 

The equations for dR and dR* are of the same structure as the Brownian 
motion of photons, so that we only need to specify the variance parameter. 
Similarly, the last equation is also a typical linear process (with a nonzero 
equilibrium value) characterized by another variance parameter, the whole 
thus representing a Bloch-type relaxation process. An isotropic distribution 
about the mean value will be assumed in the equilibrium state, for simplicity, 
which can be expressed as ( dW*  d W )  = 271-M dt, (dWz dW~) = 71~M dt, 
all others vanish, where 

/~t = (R*R)eq = 2((Z - Zo)2)oq = O(N) (21) 

We will show that the single variance parameter M can be determined from a 
detailed-balance argument in the presence of coupling between the mode and 
the atomic dipoles in equilibrium and ensure that M = O(N). 

4. A D I A B A T I C  R E D U C T I O N  A N D  THE 
R E D U C E D  PROCESSES 

4.1. The Dicke Superradiance~11'2~: y~ = Yii = 0 in (1)  

This is the case in which the atomic subsystem is switched off from the 
contact with its own reservoir. Then, the whole process becomes analogous 
to the classical Ornstein-Uhlenbeck process, where the adiabatic reduction of 
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the velocity process leading to induced diffusion in real space ~25) corresponds 
to the present adiabatic reduction of photons and the resulting induced 
diffusion of spins. The term "ad iaba t i c"  implies that the motion of the 
former is so rapid that its action on the latter can be regarded as exerted 
through every instantaneous value of the former, its time derivative being 
ignored. Thus, in the resonance condition ~ = oJ 0 ( =  f2) for simplicity in 
Eqs. (5)-(7), the reduction can be made from 

- i h  dw 
b o d t  = R o d t  + - - ,  b* o d t  = c.c. (22) 

which are substituted into the rest of  the SDE: 

2t  2 2iZ 
d R  = --x~ Z R  o d t  + K--Q-~ Z o dw, d R *  = c.c. 

(23) 
d Z  = 2h2 - iA 

-K--N RR*  o at + ~ (R* o dw - R o dw*) 

Here, the Stratonovich symmetric product is important,  because only by this 
interpretation in (22) is the radius of  the " s p i n "  IlRI], ]lRl[ ~ = R * R  + Z 2 

[=  (N + 1)/2 in the classical sense, see Appendix, (At7)] conserved, i.e., 

dlIRH 2 = R * o  d R  + R o d R *  + 2 Z o  d Z  = 0 

so that the resulting diffusion is restricted to a sphere.* This can be most 
clearly represented by a Landau-Lifschitz type of  damping with noise 

dr  = I (e  x r )  x r o d t  + 2IIR[[-1/=r • o d~ (24) 

for the intensive vectors 

r = II R II - 1( Re R, Im R, Z) w -- ~ II R [[ 1/2KN1/2(Re w, Im w, 0) (25) 

and the time-scaling factor 

I = 2h 2 I1R[[/KN (26) 

Again, the use of  the stochastic calculus provides the spherical coordinate 
representation r = sin 0 e *~, r* = c.c., z = cos 0 as follows: 

dO = sin O l d t  + i]lR]i - I/2(e - ~  o d ~  - e '~ o d ~ * )  

dq~ = ][R]]-1/2 cot 0o (e-'~~ o d~ + e ~ o d~*) (27) 

2~ 2~ 
(dO dO) = ~ I dt ,  (dq, dq,> = I - ~  cot= 0 1 at,  (dO d~o> = 0 (28) 

3 Note that the radius 14RH is not conserved, e.g., ]]RH oc e(4a2/,~N)~t, if the right-hand 
side of (22) is interpreted as the It6 integral. 
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The deterministic equation for the inversion is given by 

2 = (-2A=/KN)(]IRII 2 - Z 2 + 2~Z) (29) 

4.2. The Ordinary  Laser : 0 -~ • << YI, Y, in (1)  

The adiabatic reduction here implies that the motion of atomic dipoles 
is rapid, so that as a converse to (21) we have (again, resonance oJ = co0 is 
assumed) 

i2h d W  
R o dt = yla/-----~ Zb o dt + yx ' R* o dt = c.c. (30) 

which are substituted into the rest of the SDE (1): 

2)~2 Zb~ - i ) t  db = - K b  + ~ N  ] odt + ~ N  d W  + dw, db* = c.c. (31) 

d Z =  - y , ( Z -  Zo) 4h----~2 nZ odt + ( b * o d W - b o d W * )  (32) 
YIlY . N y ~  

Let us introduce the saturation factor s defined by 

s = 4hz/y]ly, N = O(N-*).  (33) 

This together with the transformation into the n-~o representation yields 

dn = ( - 2 K n  + yllsnZ) dt + (b* o dw + b o dw*) 

- i a  
+ y ~ ( b * o  d W -  b o dW*)  (34) 

,(, 1 ) 1 ) 
~ = 3. ~o dw - p o aw* + 2~,,V------~ o a w  - ~ o  a w *  (35) 

dZ = -y[l[(1 + sn)Z - Zo] dt + ~ (b* o d W  - b o dW*)  (36) 

We now come to one of the important points of  the manipulation, namely the 
corrections in O(N-1) to the leading deterministic equations for n and Z 
[i.e., the Statz-de Mars equation (10)]: 

= -2K(n - ~) + ylls(nZ + �89 (37) 

2 = - y l l ( Z  - Z0) - y,s(nZ + �89 (38) 

As we have seen already, the correction term proportional to ~ arises from 
the symmetric product (b* o dw + b o dw*). Here, it can be observed that the 
correction proportional to ~r  arises from a similar product involving d W  
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and dW* in (34) and (36) as a consequence of the adiabatic reduction with 
our ansatz, the physical significance of which we now show. 

At thermal equilibrium (no pumping of the atomic population) the left- 
hand sides of the deterministic equations (37) and (38) must vanish auto- 
matically, which implies that n = ~ and Z = Zo, and hence 

~r  = _ 2Z0t /= (Mow - ~Vup)J/ (39) 

Thus the ansatz of the adiabatic reduction with the symmetric multiplication 
rule has provided a condition of detailed balance which determines M. If  we 
use the usual Boltzmann factor for ~V,o. - /Vup and the Planck formula with 
the correction for spontaneous emission for ~7. we get the simple result 

~r  = �89 (40) 

which is the best result consistent with the quantum statistics (see the Ap- 
pendix). We now also argue that the same correction provides an effective 
photon number associated with the pumped atomic reservoir. Let us perform 
one more adiabatic reduction by assuming dZ = 0 in (36) and substitute the 
expression 

Z o dt = Zo o dt + i~ _ _ 1  o (b* o d W  - b o dW*)  
1 + sn 7117~r 1 + sn 

1 1 
+ -  - - o d W z  (4l) 

7, 1 + sn 

into (34), so that 

and 

yilsZ~ ~n o dt + @ * o  dw + b o dw* d n =  - 2 ~  + 1 + sn] 

+ - ih ( b* b ) sn } 
o d W  - -  o dW* + ~ o  dW~ (42) 

1 + s n  1 + s n  1 + s n  

7,Msn_.] 
{dn dn) = 4K~n + 1 + sn] dt (42a) 

This gives a deterministic equation for the single variable n 

Zon + �89 + O(n2 N_ 2) (43) 
= - 2 K ( n -  ~) + yijs 1 +sn, 

The same equation without the last correction term may be obtained by the 
adiabatic reduction of Z in Eqs. (37) and (38). Let us rewrite this equation by 
introducing 

ne = 12, nA = -(_~r/ZZo) [=O(1)] (44) 
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that is 

= - 2 ~ ( n  - n o )  YHs(--Z~ (n -- na) (45) 
1 + s n  

Then, a clear physical meaning can be assigned to the right-hand side of this 
equation: The time rate of change of the photon number consists of two 
parts: the linear decay to its thermal value ne in contact with the cavity (the 
cavity loss), and a nonlinear decay to the value nA in contact with the atomic 
reservoir (the power loss) provided that nA > 0. The latter value defined by 
(44) has a real meaning as long as Z0 < 0, i.e., the atomic population is 
ordinary. Once the population is inverted so that Z0 > 0, however, Eq. (45) 
must be rewritten as 

~,,sZo (n + InAI) l i  = - 2 K ( n  - no) + (46) 

in which the correction term nA is difficult to understand. But we assert that 
even for such a situation the negative value na has a physical significance 
from a thermodynamic point of view; it represents the effective negative 
temperature of  the atomic reservoir, just as nc represents the temperature of 
the cavity. This will be formulated in the next section. 

5. ENTROPY P R O D U C T I O N  A S S O C I A T E D  
W I T H  THE LASER SDE 

The concept of entropy production, extended from the pure thermo- 
dynamic regime to that for open systems in which thermal reservoirs are 
described as equilibrium, inexhaustible degrees of freedom and a dynamical 
system is introduced in a statistical mechanical framework, has been discussed 
by Bergmann and Lebowitz, (13) Lebowitz, (14) and also recently by Spohn and 
Lebowitz <15) (see also HeppC6>). They provided a simple expression for the 
entropy production e which reduces to the time derivative of the relative 
entropy 

S(pIpB) = Tr p ( - log  O + log PB) (in the quantum sense) (47) 

for an open system of the following type: A dynamical system represented by 
the distribution p is in contact with one thermal reservoir of temperature 
/3-1 and its evolution obeys 

dp/dt = Lp, LOB = 0 with p~ oc e-B~ (48) 

for which 

a(p) = - Tr[(Lp) log p] - fl Tr[(Lp)E] (49) 
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(the convention that the Boltzmann constant is one is used). The interpreta- 
tion of the right-hand side of (49) is that the first term represents the rate of 
entropy for the dynamical system--the information entropy in terms of p-- 
and the second term that for the reservoir, which yields the well-known 
thermodynamic description: 

- f l  Tr[(Lp)E] = - f l  Tr[p(L*E)] = - f lJ  = ~ dQ/dt (50) 

It implies that the flow of energy into the dynamical system J (calculated by 
the time derivative of the system Hamiltonian) is just equal to the negative 
heat flow into the reservoir in the absence of external work, conforming to 
the first law of thermodynamics. Therefore, 

dS dQ 
= + o (51)  

where the inequality, due to the dissipative nature of the evolution operator 
L, expresses the second law of thermodynamics. 

On the above basis the expression for a can be reasonably extended to 
those open systems in which the dynamical system is in contact with several 
thermal reservoirs as follows: 

dS 

i 

= - T r [ ~ ( L ~ p ) l o g p ] - ~ T r [ ( L ~ p ) E ]  

= ~ ~(p) (52) 
i 

where/3~- 1 is the temperature of the ith reservoir and Li the evolution operator 
for the dynamical system when its contact with every reservoir except for the 
ith one is switched off. The dynamical system p is assumed to evolve by 
the total evolution operator L = ~ L~, whereas the heat exchange between 
the system and the reservoirs is supposed to take place in such a way that the 
associated entropy change is just equal to the sum of the individual entropy 
changes. The formula (52) has not been fully justified, its validity depending 
possibly on the weak coupling treatment of the system-reservoir interaction. 
However, we show that our laser system treated by means of the previous 
adiabatic reduction method of SDE is completely adapted to the formula, 
which enables us to put the whole analysis into the thermodynamic frame- 
work. 

Let us first summarize the information-thermodynamic entropy produc- 
tion associated with a SDE: dx, = h~(x) dt + g~(x)o dw~, where the w~(t) 
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are the standard Brownian motion (dw~ d w j ) =  8~s. The Fokker-Planck 
equation which describes the probability of the process x.(t)  is 

t 
a l O (  0p) 

- 2 ~x~ g ~ P / 3  ~ + ~ logp = Lp (53) 

The last expression is due to the assumption of a single reservoir with 
temperature/3-1 for the process which satisfies the condition (48) (it imposes a 
potential condition on the drift vector b~ as a generalization of the Einstein 
relation). If we use the notation of the scalar product (p, X) for the average 
of X over the probability density p instead of the quantum trace operation, 
then 

1< 0 t0,og < - (Lp, log p) = ~ P, gu, \/~--~---t~xu +/3 ~ ~ . /  

~ <  ~logp 0 E )  
- / 3 ( p ,  L'E> = - P' g~  ~x---Z b-Z 

/32( ~E ~E) 
+ --2 P' g~ ~x~ 

[L* stands for the adjoint operator of L; see Eq. (50)]. Therefore, 

1 <  [~ logp 0E) l~ log p ~ E ) )  
~(P) = ~ P' g~\'~----~x~ +/3 ~x~ \ ~  +/~ ~x~ 

[= ~ f g~,[ a-~-logP~[3ClogL~pdx] \~x~ p~!\~x, p~] 
>/ 0 (54) 

which has been discussed frequently. (Sam It is readily applied to our laser 
system--the reduced process (27) for the superradiance and (42) for the 
ordinary laser. 

5.1. The Dicke Superradiance 

The FP equation relevant to (27) is given by 

~p , _ a [01ogp 0r ~p  
0--7 = ,~n ~-~ P~'-'-a-g-- + ~ ]  + Iefi cot20 0~ 2 (55) 
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where 

~(0) = (1/e~) cos 0 - log sin 0, e = HR[[-1 (56) 

Therefore, the Hamiltonian for the reduced system and the respective tem- 
perature are given by 

E --  IIRII c o s  0 = z ,  = 1/K (57) 

and so 

e (p )=  Ie~ dO+ logp + + cot0~--~logp p(Oq~) (58) 

Thus the reduced atomic system is a typical single-reservoir system with 
temperature determined by the cavity. 

5.2 .  The Ordinary Laser 

The FP operator relevant to (42) may be split into two parts, the cavity 
part Lc and the atom part LA, such that 

Op/~t = (Lc + LA)p (59) 

We introduce two positive constants C and A defined by 

C = 2~, A = yHslZo[ [both O(1)] (60) 

which correspond to the Scully-Lamb notation (see the Appendix), and write 
these operations explicitly: Lc is given from (17), and (the phase part is 
ignored) 

Lcp = Cnc ~---~ [pn(~---~logp + l ) ]  (61) 

We have shown that by writing the diffusion part of Lc as above, the correc- 
tion to the drift term arising from the symmetric product disappears. This 
holds also for the LA, if a correction of O(s oc N- 1) (arising from the deriva- 
tive of the saturation denominator) is ignored, and 

LAp = A[nAI "~n ~ logp + (62) 

where nA is given in (44). For the ordinary pump, Zo < 0, the value of na 
is positive, so that the steady-state equation 

LAp = 0 

has a definite solution, PA OC exp(--n/nA), for which na has the meaning of 
temperature, just as nc = ~ for the cavity temperature. Therefore, the photon 
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number n is the adequate Hamiltonian for the reduced system, and 

13c = line, ~A = 1/na (63) 

indicating that the system is a typical two-reservoir system. 
Now, the thermodynamic contribution to the entropy production 

associated with the heat flow from the system into the two reservoirs Jc and 
JA may be written as 

( n - n a )  
- [3cSc  - ~AJA = C ( p ,  n - nc)  + A P' i -+ -~ 

nc nA 

which applies equally to the inverted population Z0 > 0, i.e., 

A ( n + _ ~ n a [ )  C (p,n n c ) + ~  P' 1 + 
nc 

2~qlsZo 2 / n + M/2ZoN 3 = ~ (p, n - ~) + _ p, (64) 

This is combined with the information contribution to yield the total entropy 
production or: 

1 2 
or(p) = Cnc(p ,n (~ logp+ ~c) ) 

< n ( 0  1 ; )  
+ AInAI P' ~ "~n logp + ~ (65) 

Of course, the inverted population, especially that above threshold, is the 
most interesting case, where a new steady state should be determined as a 
kind of balance, or optimum, between the two elementary distributions 
(Pc oc e-n/~c and the fictitious on e Pa oc e+~/s~al), in which the ~(p) should 
play a decisive role. 

6. NATURE OF THE STEADY STATES 

Prigogine introduced into nonequilibrium thermodynamics the concept 
of entropy production minimum for determining the steady state, which may 
be written simply as (17~ 

J. X = minimum under some constraints (66) 

where J stands for the flow vector (such as energy flows) and X for the 
corresponding force vector, implying the gradient of a scalar, potential-like 
quantity, i.e., the entropy, so that the left-hand side of (66) represents the 
total time derivative of the entropy of the thermodynamic system under 
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consideration. The term "under  some constraints" is important in making 
the minimization problem sensible, and is specified by 

(i) J = LX, (ii) some components of X = fixed (67) 

The first constraint, a linear relation between X and J, is the well-known 
Onsager relation in linear irreversible thermodynamics, which is considered 
as a deduced result by another, similar variational principle due to Onsager. (26> 
The second constraint is characteristic of Prigogine's form here, making the 
result of variation (with respect to the unfixed force components denoted by 
Xunfixed) nontriviah 

Yunnxoa (=LXunnxea) = 0, (J" X)m~n = (LXnxed)Xnxed (68) 

Prigogine's scheme thus recapitulated may be looked upon as the reciprocal 
setting--reciprocal to Onsager's scheme. Here, we show how that scheme can 
be incorporated into the information-thermodynamic framework for 
Lebowitz-type many-reservoir systems, by way of example for the laser. 

The first consideration that one might look at is to put the expression 
a(p) into a simple variational principle: 

~(p) = minimum with respect to p 

subject to the normalization <p. 1) = 1 (69) 

The solution of this minimization problem is such that (a) it agrees with the 
exact steady state for a one-reservoir system and also for a many-reservoir 
system when the reservoir temperatures are all equal (hence with the said 
equilibrium state), (b) when the reservoir temperatures are near to one 
another, the solution satisfies 

~ L~p = 0 (70) 

to an order linear in every temperature difference/3~ - /~ j ,  but generally (c) 
the solution does not satisfy the stationary condition (70) with the total 
evolution operator, L = ~ L~.(15~ This is of course unsatisfactory, especially 
for far-from-equilibrium states like the lasing state above threshold. The 
situation can be made satisfactory by modifying the variational principle (69), 
as explained with the explicit form (65) for the laser as follows: 

Consider an expression as a functional of two probability densities p and fi 
defined by 

�9 n 2 

~(fi, p) = Cnc<p,n(~--~logfi+ -~c) ) 

+ Alnal p , ~  logfi + ~AA t> 0 (71) 
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and set the variational principle 

a(fi, p) = minimum with respect to p with each fixed p (72) 

[Note that the normalization for/~ is unnecessary, because the multiplication 
o f p  by any nonzero constant does not alter the value of ~(/~, p).] 

1repose an extra condition on the solution of the above minimization problem 
fi(p), such that 

/5(p) = p (73) 

Then, the resulting solution p (=fi) agrees with an exact (and here the unique) 
stationary solution of the total evolution operator, i.e., 

(Lc + LA)p = 0 (74) 

where the entropy production or(p) = a(fi = p, p) reduces to the thermodynamic 
contribution, i.e., 

(r = - f lcJc - flAJA ( # 0  unless fie =/3.4) 

(1 , ) (  a o et res o,d 
= -~c+T-~  P ' l + s n /  

whereas 

Jc +JA = 0 (76) 

The equation to determine the steady-state distribution, (74), is given 
from Eqs. (61) and (62) and is written explicitly as 

Alnal '~ 0 YflsZ~ (77) 
Cnc + 1 + sn]-~n l~ p = - 2 K  + 1 + sn 

Below threshold where the expectation value of the photon number n over 
the steady state is O(1), the solution of (77) may be approximated by neglecting 
the saturation factor, so that 

Cnc + Aria = O(1) (78) p oc exp ( -n / (n ) )  with (n) - C + A 

In the above-threshold case, for which ( n ) =  O(N), Eq. (77) may be 
integrated under the assumption Cne ~ A[nAI/(1 + sn) to yield 

pocexp  - ~ ( n -  ns) 2 , n~ = -s~2 = sC 

It agrees with the Gaussian approximation for the Scully-Lamb distribution 
when InAI -- 1 is chosen consistently with their model (see the Appendix). 

In the above-threshold case 

Jc = - C ( n )  < O, JA = -arc = A(n/(1 + sn)) > 0 (80) 
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which implies that extensive heat flows from the atomic reservoir, passing 
through the cavity wall to be emitted outside. 

7. C O N C L U D I N G  R E M A R K S  

The modified variation scheme (71)-(73) prescribes the way to obtain 
the correct stationary solution by indicating that the two roles of the prob- 
ability density p contained in the entropy production a(p), (65), must be 
distinguished; viz. the one in the form of grad log/~ which is subject to the 
variation, and the otherp over which the rest of quantities are to be averaged, 
but which is not subject to the variation. However, they must be identified 
with each other after the variation (in other words, the variation is to be made 
with respect to 3S = log fi - log p). A simple verification of this prescription 
can be seen in the following: 

3~(1~(fi, p)  = - 2 Cnc 7n pn log fi + 

')]) ) +AIn lN Nl~ 

= 0 -(81) 

This condition that the first-order variation vanishes for an arbitrary 3S 
under the extra requirementfi = p leads to the desired result, (Lc + LA)p = O. 

One may well ask how the above minimization principle can be compared 
with Prigogine's scheme (66)-(68) in the pure thermodynamic version. As 
noted, this scheme may be characterized by the variation in the presence of  
force constraints. Since the inverse temperatures/3~ for all the reservoirs should 
be identified with the relevant thermodynamic forces (relative to one of them, 
for the condition Y. J~ = 0~13~), the fixing of these values implies a constraint 
on the variation (e.g., here, keeping the atoms in the inverted population). 
Since each energy flux is also fixed, equal to L~*E, the variation to be made is 
only with respect to the extra degree of freedom, viz. to the probability density 
of the dynamical system. The question, then, reduces to the specific point of 
the procedure, viz. the distinction between the two objects fi and p in the 
expression a(p). We assert that this is the concept of "local potential" intro- 
duced by Prigogine, ~27'28~ although originally it was not designed specifically 
for a method to determine the steady-state distribution in transport-type 
equations. We argue that the kind of self-consistency condition expressed in 
the method is always necessary in the formulation of the variational approach 
for the determination of  the distribution in nonequilibrium states. ~z6~.4 

4 In Ref. 16, a formulation is discussed to deduce the local potential method from a 
dynamical variational principle. Although it does not pertain to the "many-reservoir" 
open system, the formulation still holds, which we hope to clarify elsewhere in a 
comprehensive treatment. 
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Thus, the formulation of the minimum principle associated with the 
entropy production in the information-thermodynamic framework is not so 
simple as in the mere thermodynamic framework, mainly because the thermo- 
dynamics disregards the ensemble, using the so-called local equilibrium 
assumption, whereas the role of the information-theoretic element necessarily 
is to determine the distribution. As a consequence, the flow-force relationship 
(the Onsager relation) should be the one to be deduced by the use of the 
steady-state distribution. For the ordinary laser this is given by 

to the leading order, i.e., the extensive order. It is linear, and stems from the 
familiar intensity-pump relationship, although going to the higher order 
correction must provide a modification which is generally nonlinear. We also 
remark that the vanishing characteristic of the total flow must be modified 
when external driving fields are present: An interesting example is resonant 
fluorescence and related bistability phenomena, which we hope to investigate 
from the information-thermodynamic point of view. 

A P P E N D I X  

The laser represents a quantum dissipative phenomenon, and one sees 
in the literature the great effort that has been made in attempting to obtain an 
adequate quantum formulation. Here, we show a direct connection of the 
present semiclassical treatment by means of SDE with the standard quantum 
treatment by means of the operator master equations, i.e., the Scully-Lamb 
master equation (12~ for the ordinary laser and that treated by the Mitano 
schooF 24'29~ for the Dicke superradiance. 

I. Scully and Lamb obtained the following master equation to calculate 
the n-representation of the density operator for the lasing mode (p, = p~,): 

8P" C[(n + l )p.§ - np.] + [ - ] - - =  A n n + l  
~t 1----+~ p"-~ 1 + s(n + 1) p" (A1) 

where a direct comparison of their definition of the parameters enables us 
to associate them with the present ones as 

C = 2K, A = 4;~IZol /7•  B/A = s (A2) 

In (A1) the C part (cavity part) involves only the downward transitions, while 
the A part (atom part) involves only the upward transitions (pump); therefore 
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one can get a more general form as 

ae.  
8--7 = 2y,[(n + 1)p.+~ - npd 

+2y  a[ n + l  n ] 
1 + s(n + 1) p"+I 1 + sn p" 

+ 2rt[np._x - (n + 1)p.] 

+27tA[ n 1 + 1  ] 
] ~ P . - 1  1 + s(n + 1) p" (A3) 

This is the equation for the diagonal part of the density operator derived from 

dp/dt = y,([b, pAD+] + [bp, b+]) 
+ y,a([br, prb +] + [brp, rb+]) 

+ yt([b +, pb] + [b+p, b]) 
+ ytA([b+r, prb] + [b+rp, rb]) (A4) 

with r = (1 + sb+b)-i/L (Such operator master equations have been dis- 
cussed by Lugiato. (3m See also Ingarden and Kossakowski. (lm) A way to 
transcribe this type of operator master equation into a Fokker-Planck equa- 
tion is the coherent-state representation that has been used extensively in 
quantum optics. Here, we adopt another method, the expansion method (see 
the end of the Appendix) to see the quantum-classical connection more 
directly, its correctness being, however, conditioned by the largeness of the 
quantum number n. The expansion rule which we use here can be summarized 
by 

f (n  + 1)p.+l - f (n)p .  -- -~n f n + ~ P.+l12 

- O n  f n +  P" +~2-Zn f n On J (A5) 

f ( n -  1 ) p ~ - i - f ( n ) p , , - - ~  f n -  P" + 2-~n f n -  OnJ (A6) 

Then, (A3) can be represented to this order as 

apn 0 [ ( ~ )  ] 0 I(  1) ap~] 
0---7-=2(Y~ -7~)Fnn n + P~ +(Y~ +7 t )~n  n +  OnJ 

o [  n +  1+/21/2) p. ] + 2 ( 7 ' a -  7tA)~nn 1 +s(n 

a [ n + 112 ap.] 
+ (7*A + 7tA)Un 1 + s(n + 1/2) an J (A7) 
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which agrees with Eqs. (59), (61), and (62) on setting 

2(y~ - Yt) = 2K = C, y~ + y,  = 2Kfi 
(A8) 

2(y, i  _ y~,A) = yHsZ0 ' y jA  ..~ y , a  = YliS.�89 ~ 

and by replacing n by n + 1/2. Clearly, this replacement corresponds to the 
inclusion of the spontaneous emission effect in each transition process con- 
tained in the master equation (A3). (One also argues that the expansion of 
each term from n + 1/2 instead ofn  is adapted to the Stratonovich symmetric- 
product technique.) Therefore, the average values ~ and M in (A8) given by 
the Einstein relations (14) and (21), respectively, should be regarded as those 
of the quantum symmetrized products 

= <�89 + bb+)>eq = 1/(e ~ - 1) + �89 (a9) 

M = (�89 + RR+))eq (A10) 

Thus, in particular, ~ contains the spontaneous emission contribution. As to 
M (average of the squared dipole moments), the symmetrized results for N 
two-level atoms is M = N(�89 - + r - r + ) }  = N/2, which is consistently 
indicated from the detailed balance consideration, (40). For the special case 
of the Scully-Lamb model for which Yt = y a = 0, however, the expansion 
(A5)-(A6) is actually not relevant. A more relevant form is given by 

ap. = C ~ np. + A a 1 s(n 1 ) \ a n  - p" (All )  aT an ~nn + + 

which corresponds to nc = 0, [na] = 1. 

I[. The superradiance master equation in the operator form may be 
written as {=9) 

dp/dt = y,([R, pR +] + [Rp, R+]) + r t([R +, pR] + [R+p, R]) (A12) 

where 

~2 ~2 
y+ = ~ (1 + ~), y, = ~-~ ~ (A13) 

in terms of the parameters used in the text, ~ being the number of thermal 
photons. The representation of the equation diagonal in the z component 
of the spin R for the diagonal part of the density operator p is given by 

apm/at = 27*(gm+lPm+l - gmPm) + 2yt(gmPm-~ -- gm+iPm) (A14) 

where 

g m =  (R + m)(R - m + 1) = ( R + � 8 9  ( m -  �89 (A15) 
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We perform the expansion of this master equation, again using (A5), (A6), 
to obtain 

ep___ m = ( 
8t 2(y, - }'1")~mm (gm+l/zPm) q- (Y* q- Yt)~-~ ,gm+l/2 Oral (A16) 

Here, the concept of "system size" may be chosen such that 

[[RI] --- g + �89 yields the intensive variable z = llRll-lm (117) 

Then 
3pz 2), 2 ( 0  ( ~ + � 8 9  ~ [ 0pz]] 
~--T = K--N IIRII ~z (1 - z2)p~ + ]]R]] ~z (1 - z 2) ~zJ] (A18) 

This Fokker-Planck equation agrees with the classical one that corresponds 
to the SDE for dO given in Eq. (17), i.e., 

[ ~ nc32P~ 2h 2 
~P__._2~t = I - (sin Opo) + [ - ~  ~02j, I = ~-~ [[Ril (119) 

through the transformation 

z = cos 0, Po dO = p~ dz (A20) 

This means that the classical Fokker-Planck equation can be used for the 
approximation to the quantum master equation (A14), in which the equi- 
librium photon number i] should be considered to contain the spontaneous 
emission contribution. 

Finally, a remark should be added on the expansion method employed 
here. Van Kampen has criticized the "ord inary"  diffusion approximation of 
a physical process in which a power series expansion of the master equation is 
truncated up to second-order derivatives. (18~ We make no assertion that the 
present procedure is free from his criticism, but maintain that our result on 
lasers above threshold involves no inconsistency with that expected from the 
pure discrete treatment when the asymptotic form of the laser distribution 
for n >> 1 is considered. 
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